Technological strategy to improve the analysis of academic performance.
Keywords:
Technological strategy, Academic performance, Data analyticsAbstract
This research addressed the existing limitations in the grade recording and reporting processes at an educational institution, identifying how these hampered the performance of detailed analysis of student academic performance and data-driven decision-making based on concrete and accurate data. The main objective was to design a technological strategy to improve this analysis through the use of analytical tools. A mixed-methods approach, descriptive and exploratory in nature, was adopted, with a non-experimental and cross-sectional design. The techniques applied included observation, surveys, interviews, and document analysis, using inductive-deductive and analytical-synthetic methods. The implementation of early warnings, especially the change to green in the cells upon reaching the minimum required grade, allowed for continuous monitoring of academic progress, strengthening timely and personalized decision-making. Furthermore, greater family participation was achieved in monitoring student performance, reflecting progress in communication and institutional commitment. The proposed strategy not only contributed to improving efficiency in grade management but also promoted the development of more effective educational practices focused on student academic success. The strategy was applied in a controlled environment and was positively valued by a group of specialists.
Downloads
References
1. Atiaja, L. E. (2023). Uso de la analítica del aprendizaje de los estudiantes para minimizar la pérdida escolar en las diferentes modalidades de estudio [Tesis de grado, Universidad Politécnica Salesiana]. https://dspace.ups.edu.ec/bitstream/123456789/25199/1/UPS-GT004465.pdf
2. Contreras, L. E., Fuentes, H. J., & Trujillo, E. R. (2021). Análisis del rendimiento académico mediante técnicas de aprendizaje automático con métodos de conjunto. Revista Boletín Redipe, 10(13), 171–190. https://doi.org/10.36260/rbr.v10i13.1737
3. Gutiérrez-Monsalve, J. A., Garzón, J., & Segura-Cardona, A. M. (2021). Factores asociados al rendimiento académico en estudiantes universitarios. Formación universitaria, 14(1), 13-24. https://doi.org/10.4067/S0718-50062021000100013
4. Olarte, Y., Felipe, M., Pinargote, M., & Almenaba, J. (2023). Predicción del rendimiento académico de estudiantes universitarios en la plataforma Moodle mediante Big Data. 16, 61-77.
5. Peng, Y., Marticorena, R., Pardo-Aguilar, C., López-N, C., & Juez, M. (2020). Seguimiento de actividad y abandono en Moodle mediante la aplicación UBUMonitor. IEEE Revista Iberoamericana de Tecnologías del Aprendizaje, 17(3), 307–317. https://doi.org/10.1109/RITA.2022.3191279
6. Saltos-Mero, J., & Cruz-Felipe, M. del R. (2024). Análisis del rendimiento académico de estudiantes de las carreras Economía y Turismo con Power BI en los periodos (2021). 593 Editorial Digital CEIT, 9(1), 762–772. https://doi.org/10.33386/593dp.2024.1.2162
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Jonathan Waner Mota Mena

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
UCE Ciencia articles are licensed under Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This license requires that reusers give credit to the creator. It allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, for noncommercial purposes only.